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Derivation of Quantum Maxwell Equations from 
Relativistic Particle Hamiltonian 

A. O. Barut n'2 and Bo-wei Xu 1'3 

Received July 17, 1992 

Given the Hamiltonian for N relativistic particles with charges and intrinsic 
magnetic moments interacting via pair potentials and self-interactions, we derive 
not only the particle equations, but also the full set of Maxwell's equations, 
thereby testing the consistency of particle equations, currents, and field equations 
in the Heisenberg picture. 

1. INTRODUCTION 

In a recent formalism of quantum electrodynamics and radiative pro- 
cesses the electromagnetic field A ,  has been eliminated between the coupled 
Maxwell and Dirac equations in terms of the currents of the particles 
(sources) [for reviews see Barut (1988, 1991a)]. As a result one has a 
(nonlinear) Hamiltonian system of charged spinning particles interacting 
via pair potentials and via self-interactions. This Hamiltonian depends on 
the canonical variables of the particles alone. In a quantized theory these 
canonical variables are Heisenberg operators x, p and Dirac spin operators 
~, qr of all the particles. Starting from such a Hamiltonian, we can derive 
not only the Heisenberg equations of the motion for the particles, but also, 
as we will show in this paper, the Maxwell equations for the fields E and 
B produced by all the particles. These fields will be operators because they 
depend on the canonical operators of the particles only. We have thus an 
operator field theory in terms of particles canonical operators. The currents 
j "  also depend on the canonical variables of the particles. If the sources 
are quantized, so will be the fields produced by them. In this formulation 
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E and B do not carry separate degrees of freedom; the quantization of the 
particles is enough. Quantized properties of fields (e.g., uncertainty rela- 
tions) follow from those of the sources. There would be a double counting 
if we assigned independent degrees of freedom to particles and fields 
separately. 

Because the original Hamiltonian itself has been constructed from the 
coupled Dirac and Maxwell equations, the reconstruction of Maxwell fields 
from the Hamiltonian is a consistency test of the equations of motion of 
the particles, their currents, and Maxwell's equations. Maxwell's equations 
are, of course, half of the physics. We must also know the currents and 
their equations, which are given by the equations of  motion of the particles. 

But by introducing fields into a particle theory we can derive a certain 
duality principle that physical quantities (e.g., energy-momentum tensor) 
can be thought to reside either in the field or in the particles. 

When we consider a subset of the particles as our system, say a single 
particle, and when the dynamics of other particles is of no interest to us, 
then this dynamics can be put into the field, which then acts as an external 
dynamical field to our system. 

Special attention must be given to the self-field of the particles, because 
the consistency of the formalism requires the inclusion of self-fields, which 
is the cause of radiative processes in quantum electrodynamics, such as the 
Lamb shift, the anomalous magnetic moment, and spontaneous emission. 

2. HAMILTONIAN AND PARTICLE EQUATIONS 

We start from N Dirac particles having charges ei (and for completeness 
anomalous magnetic moments ai) interacting via electric and magnetic pair 
potentials. The Hamiltonian is (Barut and Xu, 1982; Barut, 1991b) 

i~l j= l  j 

-ai[(~o'i).~Baj(xi)+i(t~oti).~Eaj(xi)]} (1)  
j= l  j = l  

where the two-body potentials are 

ej iaJ ( x i -  xj) �9 (flot)j (2) 
~)j (xi) 47rlxi _ xjl 7r Ixi -x:] 3 

(xi - xj) 
e~% ~_a~ (/3tr)j x - -  (3) 

Aj(x/) 4~-[xi-x~[ 7r [x/-xj[ 3 

The electric and magnetic anomalous fields Ea and Ba entering in (1) are 
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obtained from the magnetic parts of the potentials in (2) and (3): 

[ 3 ( X / -  Xj)(/~O/.)j " (Xi - -Xj )  /31~j 
~ i ~ Eas(x,) 

~L Ix,-x:l 5 I x , - x j l  ~ 

47r --Xj)] (4) 
3 (30/')J~ (X' 

.~aj ~3(Xi - -Xj ) ( /80" ) j  " (Xi - -Xj )  ~O"j 
Ba(x,) ~ L Ix,-.C Ix,-x/  

+}f (~.):(x~-x~)] (s) 

We derive first from the Hamiltonian H, equation (1), the Heisenberg 
equations of motion for the particles 

x~ = i[H, x,] = oL, (6) 

O, = i[H, p,] = -eV,  E ~bj(Xi) -[- e, E V,(oL, �9 Aj(X/)) 
J J 

+aiVi Z [ ( f l o ' ) i  �9 Saj  -- i([30Li)" E,,~] (7)  
J 

The kinetic momenta are 

so that 

~-, = p , - e ,  Y Aj(x3 (S) 
J 

"hi =lbi-e i  E )~j (xi) (9) 
J 

The last term itself can be evaluated from the Heisenberg equation 

)ls(Xi ) = i[H, As(Xi) ] = (eti" Vi)As(xi) (10) 

so that 4-, is given by (9) together with (7) and (10), which we can write as 

~ = e ~ ( E + ~  A B ) + a , [ ( f o ) ~ . V B  - i ( f l c r ) , .VE~]  ( l l )  

where we have defined 

E(x) = - v ~  Y 6j(x) 

B(x) = V~ x E As(x) 

Ea(x) = s Ea: 
J 

so (x) = Y Boj 

(12) 
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where x is the position of  the particle i. Note that the interparticle potentials 
have no explicit time dependence, and that in the sums over j in equation 
(12) the self-fields are also included. 

We see in equation (11) the Lorentz force (including the self-force, 
which must be renormalized) as well as the forces on the dipole depending 
on the gradient of the fields. Equation (11) can also be obtained directly 
from ~-= i[H, ~r). To complete the dynamical system of equations for 
the particle variables {x, ~r, at, o'}, we evaluate the remaining Heisenberg 
equations 

&i = 2~ri x o-~ - 2y~m; + 2ai[ yi(o-~ �9 Ba) - Ba A (flat)~ --/3Ea] 

- 2 ~  e~ 1 
�9 47r Ixi -xj l  atj ^ tri (13) 

6i = 2r~i x ai - 2ai [Ba A ( f i r ) i -  Ea A (ifla)i ] 

_ 2 ~  eJ 1 
�9 4~- Ixi -xj l  atj • (14) 

Equations (6), (11), (13), and (14) define our dynamical system completely 
from the point of view of  particle variables. In the next section we study 
the field equations. 

3. T H E  O P E R A T O R  M A X W E L L  E Q U A T I O N S  

From the definitions in (12) we have immediately 

V . B = 0  (15) 

and 

v. E =-V2Z ~j =A(x) 
J (16) 

jo(x) = ~  [ e j3 (x -  xj) + i4aj(~at)j. Vt$(x-  xj)] 
J 

where we have used the relations (a = fixed vector) 

v . \  r3 ]=0, v . v  --7- =4~(a.v)a(~) (17) 

Next we evaluate the remaining two Maxwell equations. Becuase we have 
in our system no explicit time dependence (see Section 4), we have 

OE/Ot=O, OB/Ot =O (18) 
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Consequently, the third Maxwell equation is automatically satisfied, 

OB/Ot = -V  x E = - V  x (V6) (19) 

as both sides are automatically zero. 
Finally, the last Maxwell equation, with (18), determines the current 

j, by 

j =V x B = V  xV x A = V ( V  �9 A) -V2A 

j(x) = Z  e j a j 6 ( x - x ~ ) -  4aj(/3cr)j x V 6 ( x - x j )  (20) 
J 

Here we have used the following identities: 

( r )  r m 87t 
V• m •  = 3 ( m ' r ) ~ - ~ + ~ - m 6 ( r )  

(21) ,m4  
-V  m.  = 3 ( m - r )  r5 r3 rag(r) 

so that, using (3) and (21), 

( r )  e ._e_e x ~ 
V x V x  ~ =V x \4~r 

(22) ,] e -V ~ +47r~6(r  
47r 

The contribution of the first term vanishes if we use the current conservation. 
For 

~ - -  V "J" 7 ~ dx' ej.j. - -  
j 4r I x -  x'[ 

= -  1 dx, V.(ej.J) lx_• 

where we have integrated by part and used V �9 (ej%)= V �9 j = 0. 
Note that from (16) and (20) the relativistic nature of the current (jo, j) 

can be seen�9 

4. EXTENSIONS OF THE FORMALISM 

Several extensions of the previous formulas are possible. 
(a) I f  we had in the Hamiltonian (1) an additional t ime-dependent 

field whose sources are far away or of not dynamical interest so that it can 
be treated as a C-number  field Aext(X , t) ,  then the modifications are as 

902/32/6-6 
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follows. In the definition of  the fields, equation (12), we get the additional 
terms 

E = - V ~ b - 0  A~t 
at 

B = V x A + V x A ext 

(23) 

so that the Lorentz equations (11) remain unchanged with the new fields 
(23). The two Maxwell's equations (15)-(16) remain unchanged. The third 
Maxwell equation (19) becomes 

( ~ 0 ( V x A e X t ) = _ V x E = _ V  x _ g r  
at 

(24) 

which is again clearly satisfied. 
In the last Maxwell equation, equation (20), we have 

02A ext 
J = V  x (V x A + V  xA~Xt) -t Ot 2 

= V x (V • A) + V(V �9 A ext) q- I--IA cxt (25) 

I f  A ext is a free field (whose sources are at infinity), we have [- ' ]A ext - -  0 ,  and 
if V �9 A ext - -  0 ,  then the current in (20) is unchanged. 

(b) We may use a fully covariant formalism. Consider the mass 
operator 9ff of the number of Dirac particles 

= Z e , A . ( x A )  - m j  + +o vV"V(x+) } 
J 

We then have 

"+ = i [ . ,  - x u -- y~ 

7~ = i [ ~ ,  7)~] = (P{ -- e A { ) [ 7  vj, 7~] + ajFV~[a{;., Y~] 

f t ,  = i[  ~ ,  Pv - eAp]  = eFvvy v + at~ a v F ~  

where F = dA.  The two Maxwell equations follow from this, div B = 0, 
OB/Ot = - V  x E. So far we have not used the explicit form of A~,. 

If  we take for A~ the sum of the Lienard-Wiechert  potentials, then we 
can derive the explicit form of the currents which is present in the Lienard- 
Wiechert potentials: 

V .  E = p ,  - O E / O t + V x B = j  
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This is clearly to be expected because the Lienard-Wiechert potentials are 
obtained from the current. 

(c) The preceding calculations can also be extended to the case where 
we have magnetic monopole and electric dipole currents, for which the 
two-body potentials are also known (Barut and Xu, 1983). 

5. CONCLUSIONS 

The Maxwell-Dirac action of electrodynamics (and its extension to 
include the anomalous magnetic moment coupling) leads by elimination of 
the electromagnetic potentials to an N-body Hamiltonian of interacting 
particles including self-interactions. From such a Hamilt0nian we have 
reconstructed in this work the Maxwell equations in which the field E and 
B operators are determined by the dynamical variables of the source-the 
particles. The self-consistency of the two procedures shows that the elec- 
tromagnetic field need not be quantized again independently. It is sufficient 
to quantize the particles, which is already done by the start ing Dirac 
equations. The quantized properties of the fields follow from these, as either 
the sources or the detectors. The radiative processes are fully contained in 
the self-energy terms. 

The problem of deriving Maxwell's equations from dynamics in a 
simple case was discussed recently by Dyson, who attributed it to Feynman 
(Dyson, 1990; see also Dombey et al., 1991). There is also a similar discussion 
by Tu et al. (1978). We tried to show in this work the full scope of the 
relationship between particle dynamics and Maxwell's equations. 

Finally note that the Breit-type magnetic interactions are included in 
equation (1): when (2) and (3) are inserted into (1) we see terms of the 
form ( l+a~.  a~)/lx~-xj[. Equation (1) is essentially the Hamiltonian of a 
covariant one-time N-body equation. The time here is an invariant center-of- 
mass time, not proper time, and hence retardation problems do not arise 
(Barut, 1991b). We have for simplicity omitted the nonlinear self-energy 
radiative terms, which can be found in Barut (1991b). These do not change 
the general form of our results. Note further that both charge and currents, 
equations (16) and (20), also contain magnetic terms which usually do not 
figure in the models of charged particle dynamics. 
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